- 1. MLOps
- 2. MLOps
- 2.1. The goal of MLOps
- 2.2. Agile Manifesto
- 2.3. DevOps
- 2.4. Machine Learning Operations
- 2.5. What is MLOps?
- 2.6. MLOps community
- 2.7. Silicon
- 2.8. Off-line (batch) vs On-line (streaming) learning
- 2.9. Security question of MLOps
- 2.10. Data
- 2.11. MLOps progress
- 2.12. Reload modules in Jupyter Notebook
- 2.13. Testing ML
- 2.14. What to track?
- 2.15. What are the inputs and what are the artifacts?
- 2.16. Tooling for MLOps
- 2.17. DVC
- 2.18. Data Pipelines (Workflow management)
- 2.19. MLFlow
- 2.20. MLFLow Tracking server backends
- 2.21. MLFlow Tracking
- 2.22. MLFlow Projects
- 2.23. MLFlow Models
- 2.24. Resources
- 2.25. Goals of SCM
- 2.26. MLOps notes